Use of Multi-Layered Networks for Coding Speech with Phonetic Features

نویسندگان

  • Yoshua Bengio
  • Régis Cardin
  • Renato De Mori
  • Piero Cosi
چکیده

Piero Cosi Centro di Studio per Ie Ricerche di Fonetica, C.N.R., Via Oberdan,10, 35122 Padova, Italy Preliminary results on speaker-independant speech recognition are reported. A method that combines expertise on neural networks with expertise on speech recognition is used to build the recognition systems. For transient sounds, eventdriven property extractors with variable resolution in the time and frequency domains are used. For sonorant speech, a model of the human auditory system is preferred to FFT as a front-end module.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Generalization Capability of Multi-Layered Networks in the Extraction of Speech Properties

The paper describes a speech coding system based on an ear model followed by a set of MultiLayer Networks (MLN). MLNs are trained to learn how to recognize articulatory features like the place and manner of articulation. Experiments are performed on 10 English vowels showing a recognition rate higher than 95% for new speakers. When features are used for recognition, comparable results are obtai...

متن کامل

معرفی شبکه های عصبی پیمانه ای عمیق با ساختار فضایی-زمانی دوگانه جهت بهبود بازشناسی گفتار پیوسته فارسی

In this article, growable deep modular neural networks for continuous speech recognition are introduced. These networks can be grown to implement the spatio-temporal information of the frame sequences at their input layer as well as their labels at the output layer at the same time. The trained neural network with such double spatio-temporal association structure can learn the phonetic sequence...

متن کامل

The Use of Phonetic Motor Invariants Can Improve Automatic Phoneme Discrimination

We investigate the use of phonetic motor invariants (MIs), that is, recurring kinematic patterns of the human phonetic articulators, to improve automatic phoneme discrimination. Using a multi-subject database of synchronized speech and lips/tongue trajectories, we first identify MIs commonly associated with bilabial and dental consonants, and use them to simultaneously segment speech and motor ...

متن کامل

Can We Use the Linguistic Information in the Signal?

This article discusses the use of phonetic features in automatic speech recognition. The phonetic features are derived from acoustic parameters by means of Kohonen networks. Behind the use of phonetic features instead of standard acoustic parameters lies the assumption that it is useful to help the system to focus on linguistically relevant signal properties. Previous experiments using very sim...

متن کامل

An Information-Theoretic Discussion of Convolutional Bottleneck Features for Robust Speech Recognition

Convolutional Neural Networks (CNNs) have been shown their performance in speech recognition systems for extracting features, and also acoustic modeling. In addition, CNNs have been used for robust speech recognition and competitive results have been reported. Convolutive Bottleneck Network (CBN) is a kind of CNNs which has a bottleneck layer among its fully connected layers. The bottleneck fea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1988